Ericsson Enterprise Wireless

SD-WAN and 5G: Traffic Steering, Network Slicing, and Beyond

We’ve all watched SD-WAN technology mature from its infancy as an MPLS replacement to a thriving young titan of optimization and automation. Now SD-WAN is entering the next phase of its lifecycle: the SD-WAN and 5G era. While once considered an afterthought addition to SD-WAN architecture, cellular broadband is the guest of honor in SD-WAN’s enterprise networking extravaganza — and will remain the center of attention for years to come. But how did SD-WAN solutions and best practices arrive at this point, and where are they headed?

Definitions

SD-WAN DEFINITION

Software-Defined WAN (SD-WAN) is technology that uses software-defined networking concepts to distribute network traffic across a wide area network (WAN). An SD-WAN follows configured policies to automatically determine the most effective way to route application traffic between branch offices and data center sites.
SOURCE: TechTarget

SD-WAN and 5G EVOLUTION

The influx of cellular connections used for Wireless WAN (WWAN) use cases in enterprise networking has necessitated and led to a new wave of SD-WAN solutions and best practices that leverage and optimize 5G and LTE in cohesion with wired and other connection options — enabling traffic steering, fully inclusive of wireless links, and network slicing in the future.

History of SD-WAN and network optimization

Best Practices for SD-WAN and 5G Deployments

Hybrid WAN and dual modems for fixed sites

Organizations with lots of widely distributed stores or branch offices can meet most of their edge networking needs through one solution by deploying a hybrid WAN router that includes cloud-managed SD-WAN features; multiple types of WAN connections; two cellular modems; Wi-Fi; and zero trust network access (ZTNA) technologies. This is the most efficient and scalable way to support SD-WAN capabilities and 5G or LTE amid a rapid expansion of fixed sites.

Explore Hybrid WAN

Explore 5G SD-WAN solution


Dual modems for vehicles

Network admins and fleet managers can address their mobility challenges and satisfy ever-rising bandwidth demands in vehicles by installing ruggedized dual-modem routers that facilitate automatic, application-based traffic steering between different carriers based on factors such as signal strength, latency, jitter, and data usage. The use of 5G and LTE SD-WAN in vehicles will become more common as digital transformation and connected technologies for fleets continue to expand.

Explore cellular in vehicles

Explore 5G SD-WAN solution


Single modem, steering between LTE PDNs or 5G network slices

With the right SD-WAN features in place, organizations can set up intelligent traffic steering to various packet data networks (PDNs) over LTE or, in the future, to various 5G network slices. Only one modem is needed for these configurations, making it easier to scale the type of scenario-specific quality of experience that businesses need amid fast-moving Wireless WAN growth.

Explore 5G SD-WAN solution

5G network slicing requires 5G SD-WAN

One of the most anticipated 5G features is network slicing, offering organizations distinctive levels of end-to-end performance across cellular networks. With mass 5G standalone deployments on the horizon, 5G-optimized SD-WAN will play a key role of recognizing, classifying, and steering corporate applications into the most appropriate carrier-defined network slice from the enterprise edge.

FAQs

In networking, traffic steering is an SD-WAN feature that improves quality of service by automatically identifying, labeling, and sending network traffic through the highest-performing WAN link. Traffic steering uses businesses policies to assign individual enterprise business applications to a single interface (Ethernet) or a group of interfaces consisting of MPLS, wired broadband, cellular, or Wi-Fi as WAN. Traffic steering is based on networks factors including signal strength, latency, jitter, and data usage.

Traditionally known as a strategy for wired networks, SD-WAN solutions have progressed and now include the ability to optimize multiple types of WAN links, including 5G and LTE. When delivered through a vendor that provides a hybrid WAN router, cloud-delivered service gateway and advanced SD-WAN capabilities, an enterprise can achieve SD-WAN traffic steering — based on latency, loss, jitter, bandwidth, and data usage — involving both wired and wireless connections.

Enterprises use SD-WAN technologies to direct specific traffic to LTE PDNs and 5G network slices — the latter only being available via 5G networks with a standalone core. However, how does networking slicing work? The slices are customized for specific use case based on differing needs regarding throughput, latency, coverage, speed, reliability, security, and more from end to end. According to 3GPP, types of network slices include eMBB for high throughput and low latency; URLLC for exceptional reliability and availability and ultra-low latency; and mMTC or cMTC for minimal, low-bandwidth IoT data

Explore how Ericsson can help your organization expand its WWAN footprint and end-to-end SD-WAN technology capabilities.

Request demo Explore routers and adapters Explore Zero Trust SD-WAN